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Abstract. We develop B formalism for introduction of inelastic collision processes in the 
Boltzmann equation. This is equivalent to including pmicipant species with intemal degrees 
of freedom. We consider a two-species mixture, where one of the particles has two allowed 
internal energy states We analyse the resulting evolution equations and find exact solutions for 
interaction models associated with electron and neutron tmsoolt. 

I. Introduction 

The usual formulation of the Boltzmann equation considers particles without internal degrees 
of freedom, consequently the scattering kernel must conserve the kinetic energy The 
possibility of internal structure in the colliding species has been introduced for the derivation 
of transport properties of polyatomic gases. In this case, molecules in unequal quantum 
states are treated as different species, and this results in a coupled set of equations equivalent 
to that of a mixture of monoatomic gases [l]. However, there are physical situations 
where point particles interact with composite systems. This is the problem of transport of 
neutrons and electrons in gases. In this case many ad hoc equations have been proposed 
to account for the inelastic contributions [2]. Inelastic scattering contributions, due to the 
nuclear interaction, are important for high-energy neutrons leaving the collided nucleus in 
an excited state, whereas for low-energy neutrons they are mainly given by kinetic-energy 
transfer in the form of atomic or molecular excitation in gas media, or phonon production 
in solid materials [3]. On the other hand, inelastic processes are important for electron 
transport even at low energies, such as in swarm propagation in gases [4], or slowing down 
of electrons beams in solids [5]. In the present paper we present a,formal derivation of the 
Boltzmann equation with inelastic processes, and we obtain solutions for simple models, 
which simulate neutron or electron transport. 

2. Bohnann equation for inelastic collisions 

We consider an inelastic reaction between a point particle A,  with mass ml, and another. 
B ,  with one possible excited state B', and mass m2: 

A + B C) A +  B * .  (1) 

For simplicity we will not introduce the already known treatment of the elastic channels and 
we will consider a single excited state. We call A E  2 0 the difference of internal energy 
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between the state B* and B ,  and denote: 
M = mi +mz & = m i  f M  tZ = 2AEf!.~l 112, M g = 1v- w /  

- 1  - - (2) n = -(v - w )  g, = (g2 + 2 ) " Z  g- = (g - E z w  ) c o s x = n . n n ' .  
g 

The cross sections for the direct Iij(g? x )  and reverse /,{ reactions satisfy 

(3) 1 . .  - 1.. 
Cl - I' 

(here azimuthal dependence could be included). The microreversibility conditions can be 
written [6] 

g: 
2 

g11z(g1 x )  = U ( g  - €)8-113k-. x) gl13(g9 x )  = --I1z(gtl x )  (4) 
g g 

where U is the step function. Considering states B and B" as different species and labelling 
species A .  B and B" by the indices I ,  2 and 3, the kinetic equations for the reactions 
indicated by ( I )  take the form 

(5 ) 
afi 
at 
- + 2,. Vrfi = Ji[fi, h l  

where the inelastic collision terms can be written 

J i [ f i 4 f i , h l  = / d w d & g / n ( g , x )  

x [fi(giv+ ~ z ~ + l ~ z g + A l ) f z ( f i t v + ~ ~ z ~  - ~ i g + * )  - fi(v)f3(w)] 

+ dwd*U(g - 6)gli2(gr X )  s 
x [fl(@lv + fi2w + PZg-n')f3(/llv + PZw - g1g-A') - fl(v)f2(w)] 

(6) 
Jz[fi, fz, fi1 = / dw dA'U(g - e ) g l d g ,  x) 

J3[fi ,f isf31 = /dwd*gli,(g,x) 

x [ f 3 ( ~ Z ~ + ~ l ~ + ~ I ~ - ~ ) f 1 ( ~ 2 ~ + L ( I ~ - ~ Z ~ - ~ ) - f f ? ( ~ ) f t ( ~ ) ]  

x [fz(/*zv+ I I I W + I L l g t ~ ) f l ( L L Z v + l l l ~ - I * Z g t ~ )  - f3(v)fdw)] 

From here on we leave implicit the space and time variables. Typically the density of 
electrons or neutrons propagating in gases is much smaller than the gas density and the 
probability of neutron-neutron or electron-electron scanering is negligible. so that nonlinear 
terms are not required in the transport equation. The elastic channels and sources can be 
introduced in (5) adding the usual terms [7]. A loss term: 

Jp[f31 = -hf3(u) (7) 
and a gain term: 

Jp[f31 = / d w A ( v , w ) f d w )  / A ( w w ) d v = B b ~  (8) 

could be added to (6) in the case that species B' is allowed to decay by an external 
mechanism, e.g. natural emission of photons or B emission. When B* is a highly excited 
state it can produce delayed neutrons in the nuclear case or Auger electrons in atoms. These 
effects could be taken into account by additional terms in (5).  
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Defining 
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we integrate (5) to obtain the mass-density conservation equations: 

apl/at +v. (p lu l )  = o  
ap2/at + v . (mu2) = m2 J ~ ( V )  dv + bp3 

ap3/at + v . (p3u3) = -mz J ~ U )  dv - hp3 

s 
s 

where we have introduced for species E' the alternative decay channel described above. 
The momentum-conservation equations, for the space homogeneous case, read 

a(plul)/at  = m l  v J ~ ( v ) d u  

a ( m w a t  = m z s  VJZW dv + mz / u d u /  

a(p3u3)/at = m2 VJ~(V) dv - A ~ u ) .  

(15) 

s 
s 

u)f3(w)dw 

In the energy case we define a kinetic energy, associated with each species: 

and obtain, again in the space-homogeneous case, 

aKz/at  = 2 

aK3/af=- uzJ~(v)dv-AK3. 

u2 Jz (v )  dv + v2 du 1 A(w, v)f3(w) dw (17) 2 2 

mz 2 s 
From equation (12) with k = 2, 

aK/at = - A E  J~(v)dv-AK3+-  f3(u)dv w 2 A ( v , w ) d w .  (18) 

This equation accounts for the transformation of kinetic into internal energy, and can be 
written as 

s m2s 2 s 

When decay is not allowed the right-hand side is zero and we obtain the total energy 
conservation equation. 

4. Explicit solutions for simple test cases 

If the energy of the transported particles is larger than a few electron volts the thermal motion 
of the target may be neglected and it can be considered at rest in the laboratory system. 
Furthermore, inelastic atomic and nuclear reactions involve an energy transfer larger than 
the thermal-motion kinetic energy. This case can be modelled assuming that species 2 is a 



Boltzmann equation for inelastic process 2713 

background, at rest, with distribution function f 2 ( ~ ,  w ,  t )  = n z ( r ,  r)S(v), i.e. a Maxwellian 
equilibrium at low temperature. In the physical cases we have in mind, the mass of the 
electron and neutron are smaller than that of the atoms and molecules in the medium, and 
we can assume pl = 0. Compatibility between the respective evolution equations for j2 
and f3 requires that f3 = n36(w) too, and n 3 ( ~ ,  t )  must be related to n2(T, t ) .  The equation 
for the light particles reads 

- j l ( w ) ;  1 [ n ~ v : / l ~ ( u + ,  A .  A') + nzU(u - E ) L J ~ ~ ~ ~ ( I J .  h. $1 d h  

+- U ( u  - ~ ) u ~ 1 1 ~ ( u , h . ~ ) f i ( ~ _ $ ) d ~  (19) 
n3 U s 

where U+ = (U' +E')'/' and U- = (U' - E ' ) ~ / ~ ,  Futhermore, the transpon of light particles 
will not noticeably change an initial spatially homogeneous medium and n2 and n3 can 
be considered as constants. Radiation damage could change the local structure of a solid 
background, but without changing densities. 

Equation (19) has a simple form when we consider a very hard particle interaction 
model [8]: 

(20) u2/12(u, A .  A') = u(h. $) 

resulting in 

afl/ar + 21 . y. jl = 11 / o(h . $)fl + A') dA' - sun3 + nzU(u - E)] jl (U) 
U U 

(21) 

We will first consider electron propagation in a medium. The cross section for inelastic 
electron-atom scattering is strongly peaked in the-forward direction [9], and assuming 
u(h.A')=qS(h.A'), whereut=Ju(f i .A')dn ' ,  weobtain 

s n3 + - U ( U - E )  o(h.A')fi(u-A')dA'. 
U 

-+uh.v,fi afl = mut -ffi(u+A)- y [ n 3 + n z U ( u - E ) ~ j i ( u h )  ut 
at U 

(22) 

The angle h only remains as a parameter, since the motion direction of the particles in 
the initial (or boundary) conditions is not changed by the assumed inelastic cross section. 
This is the usual situation in electron-beam propagation where the angular dispersion of the 
beam is mainly produced by elastic collisions [lo]. We define a variable p measuring the 
distance along a motion ray, such that 

A .  vv = a/ap (23) 

E = u / E  

s = ucn2p/c r = uIlnZt/~ (Y = n3/nz. 

n3uc +-U(u - E )  jI(U-h). 
U 

and 

(24) 
446, s, 4 = f1 (w, ~~0 2 2  

It follows that 
a4 a# P ~ + 6 ,  =$(6+ I , s , ~ ) - [ ( Y + u ( E  -I)I~(~,S,S)+U(B-I)~U~(~- ~ , s , r ) .  

(2-5) 
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This equation can be solved exactly in both the cases of isotropic space-independent and 
stationary distribution. Writing 6 = r / t ' l z  in the first case and 8 = s / t  in the second, the 
solution is 

C R Garibotti and G Spiga 

with 

or 

ank = (-I)"-' ( ) c t f i - ~ ~ ( k )  for c I .  (28) 

The solution is expressed in terms of the initial or boundary conditions given by @(c + k ,  0). 
This condition is implicitly understood to be zero for ( + k  < 0, imposing an additional lower 
bound for the k summation in (27). Positive (negative) k-values account for contributions 
to the a-energy from energy loss (gain) collisions. For a < 1, energy-gain collisions do 
not contribute. The case when species 3 is not background, but is either non-participating 
or has negligible total density, is described by the above equations with ct = 0. 

The next examples are relevant to neutron transport. When neutrons move in a medium 
the dominant collisions will occur with the atomic nucleus and the interaction potential is 
short-ranged. In this case the scattering amplitude is dominated by s-waves and the cross 
section is independent of the scattering angle. For the VHP interaction model IS] we can put 

(29) cr (6. A') = 0,/4n 

in @I) ,  and get 

NOW we define a as above, and 

then 
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The function 4 is determined by an equation obtained by angular integration of (32): 

which has a solution similar to that given by (26)-(28). Substituting this solution in (33), 
we obtain an explicit expression for the distribution. We observe that velocity anisotropy 
is only due to the initial condition. 

Now we will study the case in which the particle's interaction is given by a Maxwellian 
model: 

U l l ~ ( U .  A .  2) = n ( A  . &). (35) 

This has an energy dependence softer than the VHP model formerly considered. We introduce 
the same hypothesis as before, about a background at rest and obtain from (19): 

where 

a , = / n ( h . & ) d h '  

Denoting 

(37) 

we have 

For high velocities, u+/u e u / u -  I and this equation reduces to @I), and can be solved 
for similar cases and with the same procedures. 

When no external excitation source acts on the system, the atoms (or nuclei) constituting 
the background can only be excited by collisions with the test particles. Then, the species 3 
will be much more rarified than species 2 and we can assume 4 1 1 3  e 0. In this case the 
right-hand side of (38) contains only two terms and, for neutron transport with isotropic 
cross section, we obtain 

(40) 

The solution of the space-homogeneous case follows as before. Instead we will consider a 
stationary neutron flux in a plane slab bounded by parallel plates rl = constant. In such a 
mono-dimensional problem the distribution depends only on rl , q = cos(e^l, Cl) and speed U. 
We define : as before and 

s a f  
at - + v . K  f = nZat f (u+&)d& - nzU(u - 6)at f (~6). 

x = f f ,nzr?/~ W, e ,  q) = f (r,  vfi) &x4 t) = 211 @ ( x ,  t, d d q .  (41) 
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The function 4 is the total number of particles with dimensionless velocity e per unit volume 
around x .  For 0 < x < L (L is the dimensionless thickness of the slab) we have 

C R Garibotti and G Spiga 

with the boundary conditions 

which prescribes the incoming fluxes impinging on the two sides of the medium (in 
particular, no incident flux from the right). Then: 

4 ( x , e ,  q )  = &(e,  q)e-""(~-')J~''~)X + - e - ~ u ~ I - l l l i ' ' o ~ ~ x - x ' ~ ~ ( x ~ ,  e + 1) &' 
E ' J 2 P  sL 0 

for q z 0 

The meaning of this solution is clear: for q > 0 the first term gives the attenuation of 
the incident flux and the second gives the contribution from the dispersion in the medium. 
Meanwhile only the isotropic scattering brings particles to the negative values of r). The 
solution becomes explicit once 4 has been determined, but, ps is well known, integration 
of (42) over q does not yield a self-consistent equation for @. An integral equation for 4 
can be derived from (44) itself: 

where 

denotes an exponential integral function. This equation does 
a straightforward solution. However, let us suppose that the 

not seem to have 
initial condition is 

monochromatic, i.e. @ ( E ,  q )  = x(q)S(I - 60). During the transport process the inelastic 
collisions will only populate discrete energies = IO - k ,  down to k = [to], where [EO] 
denotes the largest integer not greater than 60. The corresponding 4 can be calculated 
recurrently: 

(k  2 1). starting from 

& x , ( o )  =21r X(q)e-xJn6indq. I '  
From (44) it is possible to derive the space dependence of the distributions. 



Boltzmann equation for inelastic process 2717 

5. Conclusions 

We have generalized the formulation of the Boltzmann equation to a system of particles 
which transfers energy to one internal degree of freedom. For formal simplicity we allowed 
for only two internal discrete states, one ground and one excited level, separated by a fixed 
energy step. However there is no difficulty in extending the formalism to a multilevel 
system, or even to continuous spectra. 

In the equations derived we have not included the already known terms for the elastic 
channels. These could be added simply to the present equations. 

We searched for exact solutions for simple cases, related to the transport of electrons 
and neutrons. This is achieved by suitable hypothesis on mass ratios and cross sections 
for the considered particles. This allows us to find some of these solutions for the space- 
homogeneous and the stationary cases. 
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